Friday, January 25, 2013

New dinosaur fossil challenges bird evolution theory

New dinosaur fossil challenges bird evolution theory [ Back to EurekAlert! ] Public release date: 24-Jan-2013
[ | E-mail | Share Share ]

Contact: Glenn Harris
G.Harris@soton.ac.uk
44-023-805-93212
University of Southampton

The discovery of a new bird-like dinosaur from the Jurassic period challenges widely accepted theories on the origin of flight.

Co-authored by Dr Gareth Dyke, Senior Lecturer in Vertebrate Palaeontology at the University of Southampton, the paper describes a new feathered dinosaur about 30 cm in length which pre-dates bird-like dinosaurs that birds were long thought to have evolved from.

Over many years, it has become accepted among palaeontologists that birds evolved from a group of dinosaurs called theropods from the Early Cretaceous period of Earth's history, around 120-130 million years ago. Recent discoveries of feathered dinosaurs from the older Middle-Late Jurassic period have reinforced this theory.

The new 'bird-dinosaur' Eosinopteryx described in Nature Communications this week provides additional evidence to this effect.

"This discovery sheds further doubt on the theory that the famous fossil Archaeopteryx or "first bird" as it is sometimes referred to was pivotal in the evolution of modern birds," says Dr Dyke, who is based at the National Oceanography Centre, Southampton.

"Our findings suggest that the origin of flight was much more complex than previously thought."

The fossilised remains found in north-eastern China indicate that, while feathered, this was a flightless dinosaur, because of its small wingspan and a bone structure that would have restricted its ability to flap its wings.

The dinosaur also had toes suited to walking along the ground and fewer feathers on its tail and lower legs, which would have made it easier to run.

###

Dr Gareth Dyke is also Programme Leader for a new one-year MRes in Vertebrate Palaeontology, which offers potential students the chance to study the evolution and anatomy of vertebrates, in order to inform and increase our understanding of the workings of modern day creatures.

For more information about the course, please visit: http://www.southampton.ac.uk/oes/postgraduate/taught_courses/mres_in_vertebrate_palaeontology.page



[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


New dinosaur fossil challenges bird evolution theory [ Back to EurekAlert! ] Public release date: 24-Jan-2013
[ | E-mail | Share Share ]

Contact: Glenn Harris
G.Harris@soton.ac.uk
44-023-805-93212
University of Southampton

The discovery of a new bird-like dinosaur from the Jurassic period challenges widely accepted theories on the origin of flight.

Co-authored by Dr Gareth Dyke, Senior Lecturer in Vertebrate Palaeontology at the University of Southampton, the paper describes a new feathered dinosaur about 30 cm in length which pre-dates bird-like dinosaurs that birds were long thought to have evolved from.

Over many years, it has become accepted among palaeontologists that birds evolved from a group of dinosaurs called theropods from the Early Cretaceous period of Earth's history, around 120-130 million years ago. Recent discoveries of feathered dinosaurs from the older Middle-Late Jurassic period have reinforced this theory.

The new 'bird-dinosaur' Eosinopteryx described in Nature Communications this week provides additional evidence to this effect.

"This discovery sheds further doubt on the theory that the famous fossil Archaeopteryx or "first bird" as it is sometimes referred to was pivotal in the evolution of modern birds," says Dr Dyke, who is based at the National Oceanography Centre, Southampton.

"Our findings suggest that the origin of flight was much more complex than previously thought."

The fossilised remains found in north-eastern China indicate that, while feathered, this was a flightless dinosaur, because of its small wingspan and a bone structure that would have restricted its ability to flap its wings.

The dinosaur also had toes suited to walking along the ground and fewer feathers on its tail and lower legs, which would have made it easier to run.

###

Dr Gareth Dyke is also Programme Leader for a new one-year MRes in Vertebrate Palaeontology, which offers potential students the chance to study the evolution and anatomy of vertebrates, in order to inform and increase our understanding of the workings of modern day creatures.

For more information about the course, please visit: http://www.southampton.ac.uk/oes/postgraduate/taught_courses/mres_in_vertebrate_palaeontology.page



[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2013-01/uos-ndf012413.php

the cell dickclark gavin degraw gavin degraw alec time 100 bob beckel

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.